
J. Lilius, J. Lindqvist, I. Porres, D. Truscan |
T. Eriksson, A. Latva-Aho, J. Rakkola

Testable Specifications of NoTA-based
Modular Embedded Systems

TUCS Technical Report
No 841, September 2007

Testable Specifications of NoTA-based
Modular Embedded Systems

J. Lilius, J. Lindqvist, I. Porres, D. Truscan
Åbo Akademi University, Department of Computer Science
Joukahaisenkatu 3-5, 20520 Turku, Finland
{Johan.Lilius, Johan.Lindqvist, Ivan.Porres, Dragos.Truscan}@abo.fi

T. Eriksson, A. Latva-Aho, J. Rakkola
Nokia Research Center
P.O.Box 407, 00045, Helsinki, Finland
{Timo.Eriksson, Antti.Latva-Aho, Juha.Rakkola}@nokia.com

TUCS Technical Report

No 841, September 2007

Abstract

We propose an approach to specifying embedded devices based on the Network
on Terminal Architecture (NoTA) and show how it allows the specification of
NoTA components, including service interfaces, and timing and energy consump-
tion constraints. The main purposes of such specifications are to enable vendors to
provide already tested component implementations with respect to specifications,
and system designers to test these components in integration. The proposed speci-
fications feature both a graphical notation for facilitating the specification process
using dedicated tools and a textual one for exchanging component specifications
between system designers and vendors.

Keywords: NoTA architecture, testing specifications, SOA, SOC

TUCS Laboratory
Embedded Systems Laboratory

and
Software Construction Laboratory

1 Introduction

Due to increasing complexity of current system specifications, system designers
need to focus on integrating the functionality of different components into a mean-
ingful product, rather than taking care of the low-level implementation details of
different components. As such, more and more parts of current embedded devices
have to be leveraged to subcontractors or third-party vendors. However, draw-
ing the full benefits from this approach requires the specification framework to
overcome several challenges.

Firstly, one has to utilize specifications that facilitate the communication be-
tween the system designer (integrator) and vendors, by clearly specifying the char-
acteristics of components to vendors. The lack of such specifications and clear
modularity has lead to a situation where potentially crippling problems, such as
the combined power consumption of two components exceeding the capacity of
the power source when running a certain test case, are detectable only after system
integration.

Secondly, the specifications of the components provided to vendors have to be
accompanied by a set of tests which enable the vendors to test the implementa-
tions of their components before delivering them to the system designer. This will
leverage off from the designer’s shoulders the testing of component implementa-
tions and thus will reduce the number of re-spins of component implementations
for fixing errors.

Thirdly, not only component specifications have to be testable, but also the
system as a whole, in order to enable the designer to test different components
in integration in the final product. This can be accomplished by defining system-
level testing scenarios that span several components.

Lastly, reuse on different levels has to be employed in order to speed up the de-
sign process and reduce the time-to-market of new products. Having well defined
specifications of existing components and benefiting from organized specification
and component libraries, system designers should be able to develop new products
in a relatively short time-frame.

In order to address some of these issues, the Network on Terminal Architecture
(NoTA) [1, 2] has being developed (at Company Name Removed) as an attempt to
enable systems developers to create highly modular, easily integrated embedded
systems, using a testable specification format. NoTA employs the concepts behind
Service-Oriented Architectures (SOA) [3] for development of embedded devices,
by dividing an embedded system into a set of components (called subsystems),
each implementing a set of services. The architecture promotes the creation of
loosely coupled components implementing well-defined interface specifications
and communicating using standardized protocols.

In this paper we propose an approach to specifying NoTA-based systems which
attempts to clearly specify to the vendors the required characteristics (service in-
terface) of a given subsystem along with specifications for testing the subsystem

1

Imaging
Subsystem
Still

Capture
Service

JPEG
Encoder
Service

Audio
Subsystem

Audio
Player
Service

Audio
Recorder
Service

Storage
Subsystem

File
Server
Service

Application
Engine

Interconnect

Application
Node

Figure 1: Example NoTA device structure

against the requirements (such as timing and energy consumption test specifica-
tions). The proposed specifications are represented using both a graphical nota-
tion for facilitating the specification process in dedicated tools and a textual one
for enabling the exchange of specifications between designer and vendors.

The paper continues as follows: the next section introduces the main concepts
behind the NoTA architecture. Section 3 delves into presenting how different
aspects of NoTA, such as requirements and testing specifications, are specified.
We accompany our presentation with excerpts from a mobile terminal case study.
Section 4 discusses the tool support for editing the specifications and how the
graphical specifications can be transformed into a textual format. We conclude
with final remarks.

2 The NoTA Architecture
A NoTA system consists of a number of service nodes and a number of appli-
cation nodes communicating through the NoTA Interconnect. The service and
application nodes are distributed on a number of modules denoted subsystems.

2.1 NoTA Subsystems
Each subsystem is conceptually an independent entity communicating with the
rest of the system only through the Interconnect. Physically, a subsystem may
reside completely on its own board, containing power regulators, processors etc.
of its own, it may be integrated with other subsystems on-chip, or anything in

2

between. However, regardless of the physical level of integration the architecture
still remains modular in the sense that the communication between subsystems
is conducted through the Interconnect in exactly the same way from the point of
view of the software running on top of the subsystem. An anticipated benefit from
this is that new features may be introduced into pioneering low-volume devices
as subsystems physically constructed using off-the-shelf components and later be
incorporated on-chip in higher-volume versions of the devices without changing
the architecture of the system. This freedom to choose the level of integration is
seen as a key benefit brought by the NoTA approach [2].

The application nodes constitute the interface toward the user of the system
and request functionality from the service nodes as needed. The service nodes
themselves may use functionality supplied by other services in order to deliver
what is requested of them. In the example system in Figure 1, this is the case with
the Still Capture which uses the JPEG Encoder to encode raw images into the
JPEG format. These images may then in turn be stored on the File Server before a
handle to the stored image is returned to the Application Node. Looking at the ex-
ample system, it is interesting to note that a high-end system may have exactly the
same structure as an entry-level system, only the service implementations might
differ.

Services are defined using a Service Interface Specification (SIS). Upon ser-
vice “power-up”, the service registers itself with the Interconnect using a service
ID associated with the interface specification. Other services may then request
a connection to a service conforming to that interface specification by using the
ID, whereupon the Interconnect sets up a connection channel. In this way, the
Interconnect is the only entity aware of the physical location of the services.

If several services conforming to the same interface specification are registered
on the system, the Interconnect chooses to which of these service instances the
node requesting the connection is connected. The choice may be made purely
based on the structure of the network lying between the nodes, or on other factors.
At present, no rules have been defined for how this choice should be made, and
it is thus up to the Interconnect implementer to make sure the choice is made
intelligently.

2.2 NoTA Interconnect
The NoTA Interconnect provides the communication capabilities needed for the
communication specified in the service interface specifications. The communica-
tion is asynchronous and in general the Interconnect guarantees only that it makes
its best effort to deliver messages. In other words, if stronger guarantees are re-
quired, they may be obtained using additional logic inside the subsystems.

The Interconnect provides two distinct communication patterns – asynchronous
messaging and data streaming. Typically, the first is used for control commands
while the second is used whenever large quantities of data are transferred between

3

subsystems. Data streaming is accomplished over the NoTA Interconnect using
the Direct Object Access (DOA) protocol.

The interface for communicating with a service node over the Interconnect is
defined by the SIS implemented by the service node. This will be discussed in
more detail in the following section.

3 NoTA Subsystem Specification

A NoTA system is typically designed in a top-down manner. Starting from the
requirements of the system, the designer identifies units of closely related func-
tionality (the services) that the system should provide in order to satisfy the re-
quirements. By applying different usage scenarios (extracted from the require-
ments) the identified set of services is partitioned into subsystems. The partition-
ing process heavily depends on designer’s experience and on business reasons.
The subsystem specifications are then distributed to vendors to be implemented in
silicon.

A subsystem specification comprises two parts: (1) a list of services (and their
SIS) that the subsystem should implement and (2) a set of usage scenarios (use
cases) that the subsystem should support.

The NoTA specifications benefit from a dual representation, having both a
graphical and a textual format. The graphical specification language has been
constructed using metamodeling techniques (i.e., by defining a modeling language
in the form of a metamodel), being intended to facilitate NoTA specifications in
graphical modeling environments. The textual specification language is defined
by extending the Web Service Description Language (WSDL), the most popu-
lar standard defining Web services, and also the standard that enables service-
oriented principles to be realized in practice in Web services. WSDL is defined
as an XML Schema [7], and thus service descriptions built using WSDL have the
form of XML documents adhering to the WSDL XSD (XML Schema Definition)
[8]. Nevertheless, although the two representations of the NoTA subsystem speci-
fication are defined using different techniques, they are basically equivalent. This
enables us to translate graphical representations into textual ones and vice-versa
at any time without losing information.

In the following, we will briefly present the different aspects of NoTA subsys-
tem specifications using the graphical specification language. The main focus of
this presentation is on how the language can be used to specify NoTA subsystems
and their services, rather then how the language has been defined. We defer for
Section 4 the exemplification of the textual specification form.

We exemplify the approach with excerpts from a mobile terminal device case
study. As a result of the service identification process several services have been
identified, as follows: StillCapture for capturing still images in bitmap (BMP)
format, JPEGEncoder for encoding bitmap images into JPEG format, APlayer

4

for playing MP3 encoded data streams, and a FileServer service for storing the
resulting image files or for providing MP3 data streams. A possible partitioning
of these services into subsystems is shown in Figure 2.

<< component , subsystem >>
ImagingSubsystem

encoder : JPEGEncodersc : StillCapture

<< component , subsystem >>
FileServerSubsystem

FS : FileServer

<< component , subsystem >>
AudioSubsystem

player : APlayer

dd: MobileTerminalSystem

Figure 2: Possible partitioning of the mobile terminal system under study

3.1 Service List Specification

The interface for communicating with a service node is defined by the SIS, which
is a central concept in the specification and testing of NoTA-based systems. The
SIS of a NoTA service consists of two main parts: a control interface and a data
interface.

3.1.1 Control Interface

The control interface depicts the part of the SIS that allows the invocation of dif-
ferent functionalities of a service. The control perspective is specified by two
artifacts: Interface Specification – a list of input/output messages and their associ-
ated parameters that the service can send and receive, and Behavior Specification
– a protocol state machine depicting the externally observable states of the service
along with the messages that can be received or sent by the service in each state.
In addition, the behavior specification depicts the messages sent by a service to
invoke (use) functionality provided by other services.

As an example, we show in Figure 3 the interface specification of a StillCap-
ture service, while in Figure 4 we present the behavior specification of the same
service.

5

NoTA_FileServer_R01_01 AudioPlayer

JPEGEncoder

StillCapture

 « » « »

 « »

 « »

service

+Create_req () :
+Create_cnf () :
+Delete_req () :
+Delete_cnf () :
+Rename_req (,) :
+Rename_cnf () :
+ IsDir_req () :
+ IsDir_cnf (,) :
+ ListDir_req () :
+ ListDir_cnf (,) :
+ReadFile_req (, ,) :
+ReadFile_cnf (,) :
+WriteFile_req (, ,) :
+WriteFile_cnf () :
+GetFileSize_req () :
+GetFileSize_cnf (,) :
+ SetFileSize_req (,) :
+ SetFileSize_cnf () :
+GetTimestamp_req () :
+GetTimestamp_cnf (,) :
+ SetTimestamp_req () :
+SetTimestamp_cnf () :
+CreateHandle_req (, , ,) :
+CreateHandle_cnf (,) :
+DeleteHandle_req () :
+DeleteHandle_cnf () :
+GetVolumeInfo_req () :
+GetVolumeInfo_cnf (, , , ,) :
+ SetVolumeLabel_req (,) :
+ SetVolumeLabel_cnf () :
+VolumeMountEvent_req () :
+VolumeMountEvent_cnf () :
+VolumeMountEvent_ind (, , , ,) :

service

+Play_req () :
+Play_cnf () :
+ EndOfStream_ind () :

service

+Encode_req (, , ,) :
+ Encode_cnf (,) :

service

+Capture_req (, ,) :
+CaptureReady_ind () :
+Capture_cnf (,) :

uri :
status :
uri :
status :

oldUri : newUri :
status :

uri :
status : isdir :
uri :
status : dirlist :

uri : offset : length :
status : data :
uri : offset : data :
status :

uri :
status : size :
uri : size :
status :

uri :
status : tstamp :
uri :
status :
uri : offset : length : write :
status : handle :
handle :
status :
uri :
status : volId : label : total : free :
uri : label :
status :

enable :
status :
status : mounted : volID : label : device :

handle :
status :

width : compression : inputHandle : outputHandle :
status : handle :

width : compression : handle :
status :

status : handle :

bdata
status_t

bdata
status_t
bdata bdata
status_t

bdata
status_t boolean

bdata
status_t dirlist_t
bdata offset_t uns32

status_t bdata
bdata offset_t bdata

status_t
bdata

status_t offset_t
bdata offset_t

status_t
bdata

status_t tstamp_t
bdata

status_t
bdata offset_t uns32 boolean

status_t handle_t
handle_t
status_t

bdata
status_t bdata bdata offset_t offset_t

bdata bdata
status_t

boolean
status_t
status_t boolean bdata bdata bdata

handle_t
int

int int handle_t handle_t
int handle_t

int int handle_t
int

int handle_t

Figure 3: Interface specification of the StillCapture service

Figure 4: Protocol state machine of the StillCapture service

3.1.2 Data Interface

The data interface specifies the types of data, namely MIME types [5], a service
supports for communicating with other services using the DOA protocol. Thus,
each service is accompanied by a Data Handling specification – that is, a set of
data handling patterns – specifying how the service is expected to communicate
using each data type. Each pattern describes properties like bandwidth, latency,
power consumption of the communication. Different patterns mirror the different
requirements posed by different types of data communication. For instance, the
performance requirements for streaming audio/mp3 data to a player may vary
greatly in terms of packet size, average bandwidth, etc. as compared to saving an
image/jpeg on a file system.

A generic data handling model is used to represent all the data handling pat-
terns. The handling model, also referred to as DOA FSM, specifies a given data
handling pattern as a state machine with two states: Idle and Active. The transfer
of data only takes place during the Active state with a specified bandwidth. If for a
given amount of time (timeout) no data has been transferred, the state of the DOA
FSM is changed back to Idle in order to save energy. The DOA FSM also mod-
els the power consumption/energy and delay of a given data handling pattern, by

6

specifying the power consumed in each state, and the energy and delay implied by
changing the state of the FSM. Future work will attempt to extend this model to
contain other performance characteristics, like peak and average energy for transi-
tions. An example DOA FSM of the APlayer service for the audio/mp3 MIME
type is given in Figure 5.

Figure 5: DOA state machine for the audio/mp3 MIME type

The DOA FSMs can be employed to estimate the properties (e.g., timing and
energy consumption) of a data transfer between two services. One of the services
will be the source and the other one the sink, and each of them may use a different
DOA FSM. By computing the cross-product of the source and sink DOA FSMs
one obtains a state machine modeling the characteristics of a given data transfer.

3.2 Use Case Specification

In our approach we regard as the Requirements a collection of documents written
in natural language, associated standards and specifications, as well as user stories.
Starting from these requirements one identifies the usage scenarios (or use cases)
and their interaction with the external environment of the system under design.

7

D
O

A
T

ra
ns

fe
r:

D
O

A
E

nc
:J

P
E

G
E

nc
od

er
S

C
:S

til
lC

ap
tu

re
F

S
:F

ile
S

er
ve

r
A

pp
:A

pp
lic

at
io

n

sd
:

U
C

1.
T

ak
e

si
ng

le
 p

ic
tu

re
.In

te
ra

ct
io

n_
1.

1

 .O
pe

nF
ile

_r
eq

("
te

m
p.

jp
g"

)

 .O
pe

nF
ile

_c
nf

(0
,h

an
dl

eF
S

)

 .C
ap

tu
re

_r
eq

(1
02

4,
80

,h
an

dl
eF

S
)

 .E
nc

od
e_

re
q(

10
24

,8
0,

ha
nd

le
S

C
,h

an
dl

eF
S

)

 .C
ap

tu
re

R
ea

dy
_i

nd
(0

)

 .E
nc

od
e_

cn
f(

0,
ha

nd
le

F
S

)

 .C
ap

tu
re

_c
nf

(0
,h

an
dl

eF
S

)

 .R
ec

ei
ve

(h
an

dl
eF

S
,D

O
A

_F
ile

S
er

ve
r_

an
y_

in
)

 .S
en

d(
ha

nd
le

F
S

,D
O

A
_J

P
E

G
E

nc
od

er
_j

pg
_o

ut
,s

iz
e

<
 5

00
00

0
an

d
si

ze
 >

 1
00

0)

 .R
ec

ei
ve

(h
an

dl
eS

C
,D

O
A

_J
P

E
G

E
nc

od
er

_b
m

p_
in

)

 .S
en

d(
ha

nd
le

S
C

,D
O

A
_S

til
lC

ap
tu

re
_b

m
p_

ou
t,s

iz
e

=
 2

35
93

50
)

<
30

0m
s

<
10

0m
s

<
47

J

<
1J

<
90

m
s

<
29

0m
s

<
20

0m
s

<
40

m
s

<
30

m
s

<
10

m
s

<
13

0m
s

<
10

J

<
8J

<
16

J

ID
LE

C
A

P
T

U
R

E
1

S
T

O
R

IN
G

ID
LE

E
N

C
O

D
IN

G

ID
LE

ID
LE

ID
LE

O
P

E
N

IN
G

ID
LE

<
12

J

Figure 6: Interaction diagram for use case UC1. Take single picture

8

This step produces a Use Case Model in which each use case is accompanied by a
textual description (including both functional and non-functional requirements).

A Use Case Library is used to provide support for reuse. The pre-defined use
case specifications stored in this library allow, once a use case is added to the Use
Case Model, to provide already built service interactions, service and subsystem
specifications which implement that particular use case.

In the case of the FileServer system, we have extracted four usage scenarios
that have to be supported by the system: UC1. Take single picture, UC2. Take
picture series, UC3. Play MP3 file and UC4. Browse file system. Each scenario is
accompanied by a description of its functionality and a number of non-functional
requirements. For instance, the description of the UC1. Take single picture is as
follows:

Take a jpeg image with resolution 1024*768 and store it on the file
server as ”temp.jpg”. From the time the image is requested to the
time it is available on the file server no more than 300ms should have
elapsed. The image should be captured (but not necessarily encoded
or stored) within 100 ms from the time of the request. With one fully
charged Li-Ion battery (1 Ah, 3.3 V) the user must be able to take
200 VGA-sized still images, including 20 % overhead for additional
tasks.

Based on the services identified at the previous step and on the textual descrip-
tion of each scenario, we analyze the interaction between the services belonging
to the same scenario. The interaction is depicted both in terms of asynchronous
messages passed between the environment and services, as well as among ser-
vices, and in terms of data transfers between services. A message may have an
input or an output direction with respect to a service and may be accompanied by
a list of parameters.

The ordering of messages received or sent by a service is depicted by their
location on a service lifeline. In addition, a lifeline may contain several zones,
depicting the sequencing of observable states of a service in time. Using zones
allows us to specify in what state of a service a given message can be sent or
received. In addition, it enables one to specify what the next state of a service
should be after a message is received or sent. For simplicity reasons, we use the
convention that a message is received or sent only at the end of (or at the beginning
of the next) zone. Figures 6 presents the interaction diagram corresponding to the
use case UC1. Take single picture.

As one may have noticed, in the previous figure, the Application represents
the external user of the system. In real-life, it is the Application that represents the
interface between the human user and the system.

Although the messages used in the interaction are asynchronous in nature,
some of the messages will have associated a return message, which depicts an
output message sent by a service in order to confirm or return the status of a

9

service functionality invoked by a previously received message. Typically, the
initiating messages are denoted using the MessageName req format, whereas
return messages are denoted using the MessageName cnf format. Exceptions
from this rule are allowed when there are more than one return messages for a
given request message. For instance, as result of receiving a request message
Capture req (see Figure 6), the SC::StillCapture lifeline responds first
with a CaptureReady indmessage confirming that a photo has been taken and
transferred to the Enc::JPEGEncoder, and then with a Capture cnf message
to announce that the JPEG encoded photo has been stored on the FileServer.

As shown earlier, energy and timing requirements may be associated with each
use case. When the use case spans several subsystems, these requirements must be
decomposed to formulate verifiable deadlines and energy budgets for the use case
portions executed by the individual subsystems. Such a decomposition is shown
in Figure 6. To explore the possibilities to verify these decomposed constraints in
practice, we have set up an experimental energy consumption test bench.

The data transfers between services are modeled as input and output streams
over the DOA Interconnect, accompanied by parameters describing the transferred
data.

4 Tool Support
As previously mentioned, in our subsystem specification approach we employ
both a graphical and a textual specification format. The definitions of the two
formats are independent, yet they are equivalent. The graphical representation
format has been defined using a metamodel and implemented in the Coral mod-
eling tool [4], whereas the XML-based representation has been defined using an
XML Schema.

Figure 7 shows a caption of Coral editing the FSM of the StillCapture service.
We find that especially the protocol state machines and the interaction sequences
modeling use cases are far easier to construct and understand using this graphical
view of the specifications.

The subsystem, service interface and use case specifications are primarily ex-
changed between the system designer and vendors as XML files. Although most
aspects of these specifications may be successfully edited and validated using
any schema-conscious XML editor, we employ Coral to automatically generate
the XML-based specification from the existing graphical representations. For in-
stance, the following XML code specifies the Imaging subsystem shown in Fig-
ure 2.
<?xml version="1.0" ?> <Subsystem xmlns="http://mde.abo.fi/NoTASpec/0.1/System/Subsystem"
name="Imaging">
<documentation>
This is the imaging subsystem, containing services related to image capture, encoding,
editing etc.

</documentation>

10

Figure 7: StillCapture FSM in Coral

<usecase>UC1 - Take single picture</usecase>
<usecase>UC2 - Take picture series</usecase>
<service name="StillCapture" specification="StillCapture">
<documentation>
Captures pictures using a camera and encodes them as bmp, no compression, 1280*960.
May use encoder services to supply other file formats and image sizes.

</documentation>
<sequence>Seq1.1 - Take single picture</sequence>
<sequence>Seq2.1 - Take picture series</sequence>

</service>
<service name="JPEGEncoder" specification="JPEGEncoder">
<documentation>Encodes JPEG images from raw or bmp input. Compression and image width
should be given, w/h ratio will be preserved.</documentation>
<sequence>Seq1.1 - Take single picture</sequence>

</service>
</Subsystem>

The XML-code for specifying the StillCapture service implemented by the
Imaging subsystem is shown below. As one may notice, the last part of the code
specifies the StillCapture FSM corresponding to the one in Figure 4.
<?xml version="1.0" ?> <SIS xmlns="http://mde.abo.fi/NoTASpec/0.1" name="StillCapture">
<documentation>
Captures pictures using a camera and encodes them as bmp, no compression, 1280*960.
May use encoder services to supply other file formats and image sizes.

</documentation>

11

<implementation>StillCapture</implementation>
<out>image/bmp</out>
<usesService>JPEGEncoder</usesService>
<ownedDOA name="DOA_StillCapture_bmp_out">
<dataType>image/bmp</dataType>
<active Power="0.5" bandwidth="600000000.0" bit_energy="0.0" timeout="0.0016"/>
<idle Power="0.1"/>
<shutdown delay="0.001" energy="0.003"/>
<wakeup delay="0.001" energy="0.003"/>

</ownedDOA>
<definitions name="StillCapture">
<documentation>
Captures pictures using a camera and encodes them as bmp, no compression, 1280*960.
May use encoder services to supply other file formats and image sizes.

</documentation>
<message code="0x0001" direction="in" name="Capture_req">
<documentation>
Capture a picture and store it on a file server.

</documentation>
<part name="width" type="nota:int"/>
<part name="compression" type="nota:int"/>
<part name="handle" type="nota:handle_t"/>

</message>
<message code="0x1001" direction="out" name="CaptureReady_ind">
<documentation>
Indication that a picture has been captured and the service is ready to receive
another capture request.

</documentation>
<part name="status" type="nota:int"/>

</message>
<message code="0x1002" direction="out" name="Capture_cnf">
<documentation>
The capture is complete, the picture has been encoded and stored on the file server.

</documentation>
<part name="status" type="nota:int"/>
<part name="handle" type="nota:handle_t"/>

</message>
</definitions>
<fsm initState="SC_Idle" name="StillCapture">
<documentation>

FSM for the StillCapture SIS. Some constraints that are not really motivated by the use cases
were added here in order to illustrate allowed possibilities to define FSM constraints.

</documentation>
<wakeup kind="lesserThan" quantity="time" value="0.01"/>
<wakeup kind="lesserThan" quantity="energy" value="0.02"/>
<shutdown kind="lesserThan" quantity="energy" value="0.02"/>
<shutdown kind="equalTo" quantity="time" value="5"/>
<constraint kind="lesserThan" quantity="meanPower" value="1"/>
<constraint kind="lesserThan" quantity="peakPower" value="2"/>
<subState name="SC_Idle">
<transition name="SC_Capture1_req_transition" nextState="SC_Capture1" trigger="Capture_req">
<testedBy>Seq1_1_Capture_req</testedBy>

</transition>
</subState>
<subState name="SC_Capture1">
<documentation>Capturing picture</documentation>
<constraint quantity="time" value="0.09"/>
<transition name="SC_Capture1_ready_transition" nextState="SC_Storing">
<effect>CaptureReady_ind</effect>
<effect>Encode_req</effect>
<testedBy>Seq1_1_CaptureReady_ind</testedBy>
<testedBy>Seq1_1_Encode_req</testedBy>

</transition>
</subState>
<subState name="SC_Storing">

12

<documentation>Storing picture, ready to capture another</documentation>
<constraint quantity="time" value="0.2"/>
<transition name="SC_Capture2_req_transition" nextState="SC_Capture2" trigger="Capture_req"/>
<transition name="SC_Encode1_ready_transition" nextState="SC_Idle" trigger="Encode_cnf">
<effect>Capture_cnf</effect>
<testedBy>Seq1_1_Capture_cnf</testedBy>
<testedBy>Seq1_1_Encode_cnf</testedBy>

</transition>
</subState>
<subState name="SC_Capture2">
<documentation>Capturing one picture while storing another</documentation>
<transition name="SC_Capture2_ready_transition" nextState="SC_Storing" trigger="Encode_cnf">
<effect>CaptureReady_ind</effect>
<effect>Encode_req</effect>
<effect>Capture_cnf</effect>

</transition>
</subState>

</fsm>
</SIS>

5 Conclusions
We have presented a specification approach for NoTA-based embedded systems
aimed at enhancing the understandability of NoTA subsystem specifications by
vendors. This reduces not only the communication effort required for the vendor
to understand the requirements, but also the risk for the system designer to re-
ceive from the vendors subsystem implementations that are not conforming to the
specifications.

These specifications are accompanied by testing specifications at different lev-
els of abstraction. At service-level, the FSM of a given service can be used to gen-
erate test vectors for verifying the timing and energy consumption of a given ser-
vice invocation, whereas at subsystem-level, tests are derived from system-level
scenarios that are using a given subsystem. These two types of testing specifi-
cations are to be employed by vendors to validate that the subsystem implemen-
tations are in line with the subsystem specifications. The approach enables the
vendor to provide already tested subsystems, thus reducing considerably the test-
ing of the implementations by the system designer. In addition, scenario-based
tests are supported in order to enable the testing of the implemented subsystem in
integration in the final system.

In order to support the specification process, tool support has been developed
to allow the graphical editing of system and subsystem specifications by the de-
signer. In addition, one can generate textual specifications for the subsystems
from the system specifications. The generated textual specifications can later on
be distributed to selected vendors that will implement the devised subsystems.

It is worth mentioning that some of the artifacts produced throughout the sub-
system specification process may be reused in order to speed the development of
later NoTA systems. These artifacts should be stored in organized libraries, eas-
ily discoverable to designers of new systems. The presented approach promotes

13

reuse on several abstraction levels. Having in place a collection of specifications
the designer can easily create new subsystem specifications reusing existing SISs,
or create new systems reusing existing subsystem specifications/implementations.
Furthermore, one may reuse existing system-level scenarios in new designs, ef-
fectively reusing a set of services and scenario-related requirements.

References
[1] K. Kronlöf, S. Kontinen, I. Oliver, and T. Eriksson. A Method for Mo-

bile Terminal Platform Architecture Development. in Advances in Design
and Specification Languages for Embedded Systems, pp. 285 – 300, DOI -
10.1007/978-1-4020-6149-3 17. Springer Netherlands, 2007

[2] R. Suoranta, New Directions in Mobile Device Architectures. Proceedings of
the 9th Euromicro Conference on Digital System Design (DSD’06). 2006.

[3] T. Erl, Service-Oriented Architecture – Concepts, Technology, and Design,
Prentice Hall, 2005.

[4] Coral modeling tool.
Online at http://mde.abo.fi.

[5] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. Network Working Group, September 1996.

[6] W3C, Web Service Description Language (WSDL).
Online at http://www.w3.org/TR/wsdl.

[7] W3C, XML Schema,
Online at http://www.w3.org/XML/Schema.

[8] W3C, WSDL Schema,
Online at http://www.w3.org/TR/wsdl,.

14

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-1950-4
ISSN 1239-1891

